5,251 research outputs found

    Multiple equilibria in a simple elastocapillary system

    Get PDF
    We consider the elastocapillary interaction of a liquid drop placed between two flexible sheets, which are both clamped at one end to a rigid substrate. This is a simple model system relevant to the problem of surface tension-induced collapse of flexible micro-channels that has been observed in the manufacture of microelectromechanical systems(MEMS). We determine the conditions under which the flexible sheets remain separated, touch at a point, or stick along a portion of their length. Surprisingly, we show that in many circumstances multiple equilibrium states are possible. We develop a lubrication-type model for the flow of liquid out of equilibrium and thereby investigate the stability of the multiple equilibria. We demonstrate that for given material properties two stable equilibria may exist and show through numerical solutions of the dynamic model that it is the initial state of the system that determines which stable equilibrium is reached by the system; the system does not simply choose the equilibrium state of lowest energy

    Boundary conditions for free surface inlet and outlet\ud problems

    Get PDF
    We investigate and compare the boundary conditions that are to be applied to free surface problems involving inlet and outlets of Newtonian fluid, typically found in coating processes. The flux of fluid is a priori known at an inlet, but unknown at an outlet, where it is governed by the local behaviour near the film-forming meniscus. In the limit of vanishing capillary number Ca it is well-known that the flux scales with Ca2/3, but this classical result is nonuniform as the contact angle approaches . By examining this limit we find a solution that is uniformly valid for all contact angles. Furthermore, by considering the far-field behaviour of the free surface we show that there exists a critical capillary number above which the problem at an inlet becomes over-determined. The implications of this result for the modelling of coating flows are discussed

    Asymptotic solutions of glass temperature profiles during steady optical fibre drawing

    Get PDF
    In this paper we derive realistic simplified models for the high-speed drawing of glass optical fibres via the downdraw method, that capture the fluid dynamics and heat transport in the fibre via conduction, convection and radiative heating. We exploit the small aspect ratio of the fibre and the relative orders of magnitude of the dimensionless parameters that characterize the heat transfer to reduce the problem to one- or two-dimensional systems via asymptotic analysis. The resulting equations may be readily solved numerically and in many cases admit exact analytic solutions. The systematic asymptotic breakdown presented is used to elucidate the relative importance of furnace temperature profile, convection, surface radiation and conduction in each portion of the furnace and the role of each in controlling the glass temperature.\ud \ud The models derived predict many of the qualitative features observed in the real industrial process, such as the glass temperature profile within the furnace and the sharp transition in fibre thickness. The models thus offer a desirable route to quick scenario testing, providing valuable practical information into the dependencies of the solution on the parameters and the dominant heat-transport mechanism

    Assessing annual global M6+ seismicity forecasts

    Get PDF
    We consider a seismicity forecast experiment conducted during the last 4 yr. At the beginning of each year, three models make a 1-yr forecast of the distribution of large earthquakes everywhere on the Earth. The forecasts are generated and the observations are collected in the Collaboratory for the Study of Earthquake Predictability (CSEP). We apply CSEP likelihood measures of consistency and comparison to see how well the forecasts match the observations, and we compare results from some intuitive reference models. These results illustrate some undesirable properties of the consistency tests: the tests can be extremely sensitive to only a few earthquakes, and yet insensitive to seemingly obvious flaws—a naïve hypothesis that large earthquakes are equally likely everywhere is not always rejected. The results also suggest that one should check the assumptions of the so-called T and W comparison tests, and we illustrate some methods to do so. As an extension of model assessment, we explore strategies to combine forecasts, and we discuss the implications for operational earthquake forecasting. Finally, we make suggestions for the next generation of global seismicity forecast experiment

    Estimating the time since discharge of spent cartridges: a logical approach fro interpreting the evidence

    Get PDF
    Estimating the time since discharge of a spent cartridge or a firearm can be useful in criminal situa-tions involving firearms. The analysis of volatile gunshot residue remaining after shooting using solid-phase microextraction (SPME) followed by gas chromatography (GC) was proposed to meet this objective. However, current interpretative models suffer from several conceptual drawbacks which render them inadequate to assess the evidential value of a given measurement. This paper aims to fill this gap by proposing a logical approach based on the assessment of likelihood ratios. A probabilistic model was thus developed and applied to a hypothetical scenario where alternative hy-potheses about the discharge time of a spent cartridge found on a crime scene were forwarded. In order to estimate the parameters required to implement this solution, a non-linear regression model was proposed and applied to real published data. The proposed approach proved to be a valuable method for interpreting aging-related data

    The salivary microbiome for differentiating individuals: proof of principle.

    Get PDF
    Human identification has played a prominent role in forensic science for the past two decades. Identification based on unique genetic traits is driving the field. However, this may have limitations, for instance, for twins. Moreover, high-throughput sequencing techniques are now available and may provide a high amount of data likely useful in forensic science. This study investigates the potential for bacteria found in the salivary microbiome to be used to differentiate individuals. Two different targets (16S rRNA and rpoB) were chosen to maximise coverage of the salivary microbiome and when combined, they increase the power of differentiation (identification). Paired-end Illumina high-throughput sequencing was used to analyse the bacterial composition of saliva from two different people at four different time points (t = 0 and t = 28 days and then one year later at t = 0 and t = 28 days). Five major phyla dominate the samples: Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes and Fusobacteria. Streptococcus, a Firmicutes, is one of the most abundant aerobic genera found in saliva and targeting Streptococcus rpoB has enabled a deeper characterisation of the different streptococci species, which cannot be differentiated using 16S rRNA alone. We have observed that samples from the same person group together regardless of time of sampling. The results indicate that it is possible to distinguish two people using the bacterial microbiota present in their saliva

    Universal Window for Two Dimensional Critical Exponents

    Full text link
    Two dimensional condensed matter is realised in increasingly diverse forms that are accessible to experiment and of potential technological value. The properties of these systems are influenced by many length scales and reflect both generic physics and chemical detail. To unify their physical description is therefore a complex and important challenge. Here we investigate the distribution of experimentally estimated critical exponents, β\beta, that characterize the evolution of the order parameter through the ordering transition. The distribution is found to be bimodal and bounded within a window 0.1β0.25\sim 0.1 \le \beta \le 0.25, facts that are only in partial agreement with the established theory of critical phenomena. In particular, the bounded nature of the distribution is impossible to reconcile with existing theory for one of the major universality classes of two dimensional behaviour - the XY model with four fold crystal field - which predicts a spectrum of non-universal exponents bounded only from below. Through a combination of numerical and renormalization group arguments we resolve the contradiction between theory and experiment and demonstrate how the "universal window" for critical exponents observed in experiment arises from a competition between marginal operators.Comment: 26 pages, 5 figures and 6 tables. Uses longtable packag

    Long Memory in Earthquake Time Series: The Case Study of the Geysers Geothermal Field.

    Get PDF
    The present study aims at proving the existence of long memory (or long-range dependence) in the earthquake process through the analysis of time series of induced seismicity. Specifically, we apply alternative statistical techniques borrowed from econometrics to the seismic catalog of The Geysers geothermal field (California), the world’s largest geothermal field. The choice of the study area is essentially guided by the completeness of the seismic catalog at smaller magnitudes (a drawback of conventional catalogs of natural seismicity). Contrary to previous studies, where the long-memory property was examined by using non-parametric approaches (e.g., rescaled range analysis), we assume a fractional integration model for which the degree of memory is defined by a real parameter d, which is related to the best known Hurst exponent. In particular, long-memory behavior is observed for d > 0. We estimate and test the value of d (i.e., the hypothesis of long memory) by applying parametric, semi-parametric, and non-parametric approaches to time series describing the daily number of earthquakes and the logarithm of the (total) seismic moment released per day. Attention is also paid to examining the sensitivity of the results to the uncertainty in the completeness magnitude of the catalog, and to investigating to what extent temporal fluctuations in seismic activity induced by injection operations affect the value of d. Temporal variations in the values of d are analyzed together with those of the b-value of the Gutenberg and Richter law. Our results indicate strong evidence of long memory, with d mostly constrained between 0 and 0.5. We observe that the value of d tends to decrease with increasing the magnitude completeness threshold, and therefore appears to be influenced by the number of information in the chain of intervening related events. Moreover, we find a moderate but significant negative correlation between d and the b-value. A negative, albeit weaker correlation is found between d and the fluid injection, as well as between d and the annual number of earthquakes.post-print4396 K
    corecore